

GE Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126 Ph: 630-530-6600, Fax: 630-530-6630

VOC OVERALL REDUCTION EFFICIENCY STUDY

Performed At
Ferrara Pan Candy Company
Forest Park Plant
Catalytic Oxidizer
Forest Park, Illinois

Prepared For

Mostardi Platt Environmental

Test Dates
June 26, 2003

Report No.
GE Mostardi Platt Report M22E0133A
Revision 0

Report Submittal Date
July 16, 2003

CERTIFICATION SHEET

Having reviewed the test program described in this report, I hereby certify the data, information, and results in this report to be accurate and true according to the methods and procedures used.

Data collected under the supervision of others is included in this report and is presumed to have been gathered in accordance with recognized standards.

GE MOSTARDI PLATT

Scott W. Banach

Director, Project Engineering

Scott W. Bousel

TABLE OF CONTENTS

CERTIFICATION SHEET	i
1.0 INTRODUCTION	1
1.1 Project Contact Information	
2.0 SUMMARY OF RESULTS	
3.0 DISCUSSION OF RESULTS	
4.0 TEST PROCEDURES	2
4.1 Volumetric Flowrate Determination	3
4.2 Oxygen (O ₂)/Carbon Dioxide (CO ₂) Determination.	3
4.3 Moisture (H ₂ O) Determination	5
4.4 Methane (Cr ₄) and Ediane (C ₂ r ₆) Determination.	5
4.6 Enclosure Criteria and Techniques (PTE)	5
4.6.1 NDO Distance to Emitting Point (PTE)	5
4.6.2 Total NDO Area (PTE)	6
4.6.3 Velocity of Airflow through NDO (PTE)	6
4.6.4 Direction of Airflow through NDO (PTE)	6
4.7 Evaluation Results (PTE)	0
4.7.1 Big Chocolate Room	/
4.7.1.1 Equivalent Diameters. NDO to VOC Entitling Four (FTE)	7
4.7.1.3 NDO Facial Velocity Determinations (PTE)	7
4.7.1.4 NDO Air Flow Direction (PTE)	8
4.7.2 West Polishing Room	8
4.7.2 West Polishing Room	8
4.7.2.2 NDO to Enclosure Area Ratio (PTE)	9
4.7.2.3 NDO Facial Velocity Determinations (PTE)	9
4.7.2.4 NDO Air Flow Direction (PTE)	9
4.7.3 Ferrara Pan Chocolate Room	9
4.7.3.1 Equivalent Diameters: NDO to VOC Emitting Point (PTE)	9
4.7.3.3 NDO Facial Velocity Determinations (PTE)	10
4.7.3.4 NDO Air Flow Direction (PTE)	10
4.7.4 Mint Room	
4.7.4.1 Equivalent Diameters: NDO to VOC Emitting Point (PTE)	.10
4.7.4.2 NDO to Enclosure Area Ratio (PTE)	. 10
4.7.4.3 NDO Facial Velocity Determinations (PTE)	.11
4.7.4.4 NDO Air Flow Direction (PTE)	.11
5.0 QUALITY ASSURANCE PROCEDURES	. 11
6.0 TEST RESULTS SUMMARY	.13
APPENDIX	
Oxidizer Operating Data	15
Test Section Diagrams.	
Sample Train Diagrams	
Sample Analysis Data	.22
Calculation Nomenclature and Formulas	_30
Test Data and Results (Computer and Hand)	.34
Calibration Data	.51
Calibration Gas Certificates	
Field Data Sheets	.68
PERMANENT LOIST BROUNTIFE LET FILIAIA	11

VOC OVERALL REDUCTION EFFICIENCY STUDY

Performed For

MOSTARDI PLATT ENVIRONMENTAL

At The

Ferrara Pan Candy Company
Forest Park Plant
Catalytic Oxidizer
Forest Park, Illinois
June 26, 2003

1.0 INTRODUCTION

GE MOSTARDI PLATT, a division GE Energy and Industrial Services, Inc. (GE Mostardi Platt) performed a volatile organic compound (VOC) overall reduction efficiency test program on the catalytic oxidizer at the Forest Park Plant of Ferrara Pan Candy Company (Ferrara Pan) in Forest Park, Illinois, on June 26, 2003 for Mostardi Platt Environmental. The tests were authorized by Ferrara Pan and performed for Mostardi Platt Environmental.

The purpose of this test program was to determine the VOC destruction efficiency during normal operating conditions with tests performed at the oxidizer inlet and outlet. An evaluation of the permanent total enclosure was also made to verify 100% capture.

1.1 Project Contact Information

Location	Address	Contact
Test Facility	Ferrara Pan Candy Company 7301 West Harrison Street Forest Park, Illinois 60130	Mr. Albert Maronta 708-366-0500
Testing Coordinator	Mostardi Platt Environmenta 1520 Kensington Road Suite 204 Oakbrook, Illinois 60523-2139l	Mr. Britt Wenzel 630-993-2100 bwenzel@mostardiplattenv.com

Location	Address	Contact	
Testing Company	GE Mostardi Platt	Mr.Eric L. Ehlers	
Representative	888 Industrial Drive Elmhurst, Illinois 60126	Project Manager 630-530-6621 (phone)	
		630-530-6630 (fax)	
		eric.ehlers@ps.ge.com	

The tests were conducted by Messrs. S. Burton, J. Halla, A. Sakellariou, T. Barr, D. Thompson and E. Ehlers of GE Mostardi Platt.

2.0 SUMMARY OF RESULTS

During this test program, four (4), one-hour volatile organic compound (VOC) tests were performed simultaneously at the catalytic oxidizer inlet and outlet test locations. Destruction efficiency averaged 96.90%. Complete test results for the catalytic oxidizer test locations are given on page 9.

The enclosures surrounding the big chocolate room coating system, west polishing room coating system, Ferrara Pan chocolate room coating system and the mint room coating system met all four criteria required by the United States Environmental Protection Agency (USEPA) to qualify as a 100% permanent total enclosure (PTE). USEPA Method 204 results are appended. The overall reduction efficiency was then 96.90%.

3.0 DISCUSSION OF RESULTS

Four (4), one-hour VOC tests were run simultaneously on the catalytic oxidizer inlet and outlet test location. Tedlar bags were filled during each run at the inlet and outlet of the oxidizer in order to subtract methane and ethane concentrations from the results of the total hydrocarbon testing. Test one (1) is not included in the averages as the system was not running at normal conditions throughout the test run.

No problems were encountered with the testing equipment during the test program. Source operation appeared normal during the entire test program.

4.0 TEST PROCEDURES

All testing, sampling, analytical, and calibration procedures used for this test program were performed as described in the Title 40, Code of Federal Regulations, Part 60 (40CFR60), Appendix A, Methods 1 through 4, 18, 25A, and Part 51 (40CFR51), Appendix M, Method 204, and the latest revisions thereof. Where applicable, the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary

Source Specific Methods, United States Environmental Protection Agency (USEPA) 600/4-77-027b was used to determine the precise procedures.

4.1 Volumetric Flowrate Determination

In order to determine the emission rate on a lbs/hr basis, the gas velocity and volumetric flowrate were determined using Method 2, 40CFR60.

Velocity pressures were determined by traversing the test locations with S-type pitot tubes. Temperatures were measured using a K-type thermocouple with a calibrated digital temperature indicator. The molecular weight and moisture content of the gases were determined to permit the calculation of the volumetric flowrate. Sampling points utilized were determined using Method 1, 40CFR60.

4.2 Oxygen (O2)/Carbon Dioxide (CO2) Determination

Oxygen (O₂) and carbon dioxide (CO₂) gas contents were determined in accordance with Method 3, 40CFR60. This method analyzed samples collected in a grab manner using a Hays Orsat gas analyzer. Several gas extractions were performed during each test run to ensure a stable reading. Mandatory leak checks were performed prior to and following each use. Chemicals are changed frequently and inspected for reactivity prior to each use.

4.3 Moisture (H₂O) Determination

Determining the moisture content in the gas stream is necessary to calculate the stack gas volumetric air flow on a dry basis and the emission rate in lbs/hr. For this purpose, GE Mostardi Platt used two methods.

1. American National Standards Institute (ANSI)/American Standard Testing Method (ASTM) Method E337-62 reapproved 1979, wet bulb/dry bulb measurements were made at the inlet duct during each sampling run and the water vapor content was calculated as follows:

$$Bws = \left[\frac{e' - AP(t - t')}{P}\right]$$

where:

e' = saturated vapor pressure of water, in. Hg, at the wet bulb temperature, t'

 $A = 3.67 \times 10^{-4} [1 + 0.00064(t' - 32)]$

P = absolute pressure, in. Hg, in the duct

t = dry bulb temperature, °F

t' = wet bulb temperature, ° F

2. At the catalytic oxidizer outlet, An Alternative Method for Stack Gas Moisture Determination, written by John Stanley and Peter Westlin, August 1978, Emission Measurement Branch, USEPA, was utilized. The sampling equipment was the same as specified for the moisture approximation method in Method 4, 40CFR60, except for the addition of two impingers, one containing silica gel.

Approximately 15 mls of water were added to each of the first two impingers and the third was left empty. An impinger containing approximately 15 grams of silica gel and a glass-wool-packed outlet was attached following the third impinger. The entire impinger train, excluding the inlet and outlet connectors, was weighed to the nearest 0.05 gram. The impingers were placed in an ice bath to maintain the sampled gas passed through the silica gel impinger outlet below 68°F. Maintaining the temperature increases the accuracy of the sampled dry gas volume measurement. Each sample was extracted through a stainless steel probe at a constant sample rate of between one to four liters per minute, which was maintained during the course of the other simultaneous reference method sampling. An adequate volume was drawn to ensure accuracy. A minimum of the equivalent to one gram of moisture must be collected to acquire that accuracy. After each test run, a leak check of the sample train was performed at a vacuum greater than the sampling vacuum to determine if any leakage had occurred during sampling. Following the leak check, the impingers were removed from the ice bath and allowed to warm. Any condensed moisture on the exterior was removed and the train reweighed.

4.4 Methane (CH₄) and Ethane (C₂H₆) Determination

The Method 18, 40CFR60, sampling and measurement system meets the requirements for stack sampling of gaseous organic compounds set forth by the USEPA. In particular, it meets the requirements of USEPA Reference Method 18, "Determination of Gaseous Organic Compound Emissions by Gas Chromatography," 40CFR60, Appendix A. This method applies to the analysis of approximately 90% of the total gaseous organics emitted from an industrial source. The major organic components of a gas mixture are separated by gas chromatography and methane and ethane are quantified by a flame ionization detector (FID).

The gas chromatograph used during this program was a Varian 3400 with a FID. This instrument was calibrated using ultra-zero air and methane (CH₄) and ethane (C₂H₆) in nitrogen certified standards. The calibrations were performed before and after sampling with calibration checks performed each day. Sample times and locations were logged on integrator printouts.

4.5 Total Organic Concentration Determination

Method 25A, 40CFR60, sampling and measurement system meets the requirements for stack sampling of volatile organic compounds (VOCs) set forth by the USEPA. In particular, it meets the requirements of USEPA Reference Method 25A, "Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer," 40CFR60, Appendix A. This method applies to the measurement of total gaseous organic concentration of hydrocarbons. With this method, gas samples were extracted from the inlet and stack through heated Teflon® sample lines to the analyzers.

The flame ionization detectors (FIDs) used during this program were JUM Model VE-7 High-Temperature Total Hydrocarbon Analyzers. They are highly sensitive FIDs that provide a direct reading of total organic vapor concentrations with linear ranges of 0-10, 100, 1000 and 10,000 ppm by volume. The instruments were calibrated using ultra-zero air and propane in air certified standards. The calibrations were performed before and after sampling with calibration checks performed between each test run. Sampling was conducted continuously for three one-hour periods. Sample times and locations were logged simultaneously on data loggers. Final concentrations were determined by subtracting the methane and ethane analysis from the Method 18, 40CFR60.

4.6 Enclosure Criteria and Techniques (PTE)

4.6.1 NDO Distance to Emitting Point (PTE)

Criteria:

All NDOs such as open doorways, windows, etc. must be at least four equivalent NDO diameters from the nearest potential VOC emitting point.

Technique:

The dimensions of all NDOs and distances to potential emitting points are measured. The calculated NDO equivalent diameters are compared to the emitting point distances measured.

4.6.2 Total NDO Area (PTE)

Criteria:

The area of all NDOs divided by the total area of all walls, floors and ceilings in the enclosure (called the "NEAR" ratio in the procedure) must not exceed 0.05.

Technique:

The measured surfaces were used to determine a composite surface area of the enclosure and the normally open NDOs and the NEAR ratio was determined.

4.6.3 Velocity of Airflow through NDO (PTE)

Criteria:

The calculated face velocity through the NDOs must be greater than 200 feet per minute (fpm). This is defined as the total exhaust volume (in scfm), less make up air, divided by the area of all NDOs (in square feet). Alternately, the static pressure of the PTE can be measured. A negative draft pressure of 0.007 inches H₂O is equivalent to a face velocity of 200 feet per minute.

Technique:

The static pressure of the PTE was measured to verify if it meets the -0.007 inches H₂O criteria.

4.6.4 Direction of Airflow through NDO (PTE)

Criteria:

The direction of airflow through all NDOs must be into the enclosure.

Technique:

A velometer was used at each normally open NDO to measure the direction of the airflow. A record of this data was made on the Procedure T data sheet, appended.

4.7 EVALUATION RESULTS (PTE)

The four (4) enclosures must meet all of the following four (4) requirements to qualify as a PTE. As currently configured, the enclosures geometries compare to Method 204 criteria as follows:

4.7.1 Big Chocolate Room

4.7.1.1 Equivalent Diameters: NDO to VOC Emitting Point (PTE)

A list of minimum and current NDO to VOC emitting point distances are listed below:

		Equivalent	VOC	Distances		
NDO	Dimensions	Diameter	Emission Point	Minimum	Actual	Pass/Fail?
Exit Door NDO #1	1" x 6'6"	10.0"	Food Grade Alcohol Coater	40"	18617	Pass
Exit Door NDO #2	2" x 3'6"	10.3"	Food Grade Alcohol Coater	41.4"	186"	Pass
Hole in Floor NDO #3	16" Diameter	16"	Food Grade Alcohol Coater	64"	264"	Pass

Equivalent Diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

4.7.1.2 NDO to Enclosure Area Ratio (PTE)

The calculated NEAR ratio of the room is 0.0006. The calculation is as follows:

where:
$$A_N/A_T \le 0.05$$

 $A_N = \text{Area of normally open NDOs} = 6.707$
 $A_T = \text{Total Area of enclosure} = 11,094.52$
 $\therefore A_N 6.707 \div A_T 11,094.52 = 0.0006$

Because the calculated NEAR is less than the maximum allowable ratio of 0.05, the enclosure meets the requirements of this section.

4.7.1.3 NDO Facial Velocity Determinations (PTE)

The static pressure of the PTE was measured using a micromanometer. The negative pressure in the enclosure was an average of -0.023 inches H_2O . This meets the -0.007 inches H_2O criteria.

4.7.1.4 NDO Air Flow Direction (PTE)

The air flow, verified using a velometer, through all of the normally open NDOs was into the enclosure.

4.7.2 West Polishing Room

4.7.2.1 Equivalent Diameters: NDO to VOC Emitting Point (PTE)

A list of minimum and current NDO to VOC emitting point distances are listed below:

		Faninalant	voc	Dista	nces	
NDO	Dimensions	Equivalent Diameter	Emission Point	Minimum	Actual	Pass/Fail?
Exit Door 1 NDO 1	0.25" x 8.25"	1.6"	Food Grade Alcohol Coater	6.5"	90"	Pass
Exit Door 1 NDO 2	0.25" x 8.25"	1.6"	Food Grade Alcohol Coater	6.5"	90"	Pass
Exit Door 1 NDO 3	1.5" x 12"	4.8"	Food Grade Alcohol Coater	19.2"	90"	Pass
Exit Door 1 NDO 4	0.125" x 30"	2.2"	Food Grade Alcohol Coater	8.7"	90"	Pass
Exit Door 2 NDO 5	0.25" x 8"	1.6"	Food Grade Alcohol Coater	6.5"	90"	Pass
Exit Door 2 NDO 6	0.25" x 8"	1.6"	Food Grade Alcohol Coater	6.5"	90"	Pass
Exit Door 2 NDO 7	0.125" x 30"	2.2"	Food Grade Alcohol Coater	8.7"	90"	Pass

Equivalent Diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

4.7.2.2 NDO to Enclosure Area Ratio (PTE)

The calculated NEAR ratio of the room is 0.00003. The calculation is as follows:

$$A_N/A_T \leq 0.05$$

where: $A_N = Area$

 A_N = Area of normally open NDOs = 0.233 A_T = Total Area of enclosure = 8,096.83 A_N 0.233 ÷ A_T 8,096.83 = 0.00003

Because the calculated NEAR is less than the maximum allowable ratio of 0.05, the enclosure meets the requirements of this section.

4.7.2.3 NDO Facial Velocity Determinations (PTE)

The static pressure of the PTE was measured using a micromanometer. The negative pressure in the enclosure was -0.018 inches H_2O . This meets the -0.007 inches H_2O criteria.

4.7.2.4 NDO Air Flow Direction (PTE)

The air flow, verified using a velometer, through all of the normally open NDOs was into the enclosure.

4.7.3 Ferrara Pan Chocolate Room

4.7.3.1 Equivalent Diameters: NDO to VOC Emitting Point (PTE)

A list of minimum and current NDO to VOC emitting point distances are listed below:

Favirol		Equivalent VOC Emission		Dista	Distances	
NDO	Dimensions	Diameter	Emission Point	Minimum	Actual	Pass/Fail?
Exit Door NDO #1	1" x 6'	9.58"	Food Grade Alcohol Coater	38.3"	144"	Pass

Equivalent Diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Minimum Allowed Distance = $4 \times \text{Equivalent Diameter (NDO)}$

4.7.3.2 NDO to Enclosure Area Ratio (PTE)

The calculated NEAR ratio of the room is 0.0001. The calculation is as follows:

$$A_N/A_T \leq 0.05$$

where:

 A_N = Area of normally open NDOs

0.500

A_T = Total Area of enclosure

4,063.00

 $A_N 0.500 \div A_T 4,063$

0.0001

Because the calculated NEAR is less than the maximum allowable ratio of 0.05, the enclosure meets the requirements of this section.

4.7.3.3 NDO Facial Velocity Determinations (PTE)

The static pressure of the PTE was measured using a micromanometer. The negative pressure in the enclosure was an average of -0.011 inches H_2O . This meets the -0.007 inches H_2O criteria.

4.7.3.4 NDO Air Flow Direction (PTE)

The air flow, verified using a velometer, through all of the normally open NDOs was into the enclosure.

4.7.4 Mint Room

4.7.4.1 Equivalent Diameters: NDO to VOC Emitting Point (PTE)

A list of minimum and current NDO to VOC emitting point distances are listed below:

		Equivalent	VOC	Dista	nces	
NDO	Dimensions	Diameter	Emission Point	Minimum	Actual	Pass/Fail?
Exit Door 1 NDO 1	1" x 8'	11.1"	Food Grade Alcohol Coater	44.4**	144"	Pass

Equivalent Diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

4.7.4.2 NDO to Enclosure Area Ratio (PTE)

The calculated NEAR ratio of the room is 0.00008. The calculation is as follows:

 $A_N/A_T \leq 0.05$

where:

 A_N = Area of normally open NDOs

0.667

A_T = Total Area of enclosure

8,256.00

 $A_N 0.667 \div A_T 8,256$

0.00008

Because the calculated NEAR is less than the maximum allowable ratio of 0.05, the enclosure meets the requirements of this section.

4.7.4.3 NDO Facial Velocity Determinations (PTE)

The static pressure of the PTE was measured using a micromanometer. The negative pressure in the enclosure was -0.009 inches H_2O . This meets the -0.007 inches H_2O criteria.

4.7.4.4 NDO Air Flow Direction (PTE)

The air flow, verified using a velometer, through all of the normally open NDOs was into the enclosure.

Calculations were performed on computer and by hand. An explanation of the nomenclature and calculations along with the complete test results is included in the appendix. Also appended are calibration data and copies of the raw field data sheets.

Sample recovery was performed at the test site by the test crew. Initial and final analyses were performed at the GE Mostardi Platt laboratory in Elmhurst, Illinois. Copies of all sample analysis sheets are appended to this report.

Raw date are kept on file at the GE Mostardi Platt office in Elmhurst, Illinois. All samples from this test program (not already used in analysis) will be retained for 60 days after the submittal of the report, after which they will be discarded unless GE Mostardi Platt is advised otherwise.

5.0 QUALITY ASSURANCE PROCEDURES

GE Mostardi Platt recognizes the previously described reference methods to be very technique oriented and attempts to minimize all factors which can increase error by implementing its Quality Assurance Program into every segment of its testing activities.

Dry and wet test meters were calibrated according to methods described in the Quality Assurance Handbook, Sections 3.3.2, 3.4.2 and 3.5.2. Percent error for the wet test meter according to the methods was less than the allowable error of 1.0 percent. The dry test

meters measured the test sample volumes to within 2 percent at the flowrate and conditions encountered during sampling.

Calibration gases were Protocol One gases.

6.0 TEST RESULTS SUMMARY

Ferrara Pan Candy Catalytic Oxidizer Forest Park, Illinois June 26, 2003

	Method 25A VOC Results Summary								
Position	Test	Time	Airflow (dscfm)	Temp (°F)	Moisture Corr (1-Bws)	VOC Conc (ppmvd as C ₃ H ₈)	Methane Conc (ppmvd)	Non Methane VOC Conc (ppmvd as C ₃ H ₈)	VOC Emission Rate (lbs C ₃ H ₈ /hr)
	2	710-810	7,437	73.5	0.980	240.6	2.4	239.8	12.22
Prime Oxidizer	3	820-845/ 855-930	7,245	73.0	0.980	261.1	2.5	260.3	12.92
Inlet	4	1115-1215	6,929	73.0	0.980	307.3	2.5	306.5	14.55
	A	verage	7,204	73.2	0.980	269.7	2.5	268.9	13.23
	2	710-810	7,201	200.8	0.976	8.3	5.1	6.6	0.33
Prime Oxidizer	3	820-845/ 855-930	6,954	199.0	0.971	9.7	4.3	8.3	0.40
Outlet	4	1115-1215	7,261	202.3	0.973	11.6	4.5	10.1	0.51
	A	verage	7,139	200.7	0.973	9.9	4.6	8.4	0.41

Destruction Efficiency Summary					
Test No.	Inlet (lbs C ₃ H ₈ /hr)	Outlet (lbs C ₃ H ₈ /hr)	Efficiency (%)		
1	12.22	0.33	97.30		
2	12.92	0.40	96.90		
3	14.55	0.51	96.49		
Average	13.23	0.41	96.90		

VOC ppmvd as
$$C_3H_8$$
 = observed ppm, Wet $\times \frac{1}{(1-Bws)}$
Non Methane VOC as C_3H_8 = VOC ppmvd as C_3H_8 - $\left(\frac{\text{Methane}}{3}\right)$
Emission Rate (lbs/hr) = $\frac{\text{Concentration (ppmvd as } C_3H_8)}{8.7573 \times 10^6} \times \text{dscfm} \times 60$

Destruction Efficiency(%) =
$$\frac{\text{Inlet (lbsC}_{3}H_{8} / \text{hr}) - \text{Outlet (lbsC}_{3}H_{8} / \text{hr})}{\text{Inlet (lbsC}_{3}H_{8} / \text{hr})} \times 100$$

APPENDIX

EQUAL AREA TRAVERSE FOR ROUND DUCTS

Job: Ferrara Pan Candy Company

Forest Park, Illinois

Date: June 26, 2003

Unit No: Catalytic Oxidizer

Duct No: Inlet

Duct Diameter: 30 Inches

Duct Area: 4.91 Square Feet

No. Points Across Diameter: 8

No. of Ports: 2

Sampling Train for Integrated Gas Sampling

USEPA Method 3

Dwg - E

Measurement of Gaseous Organic Compound Emissions By Gas Chromatography

USEPA Method 18

Dwg - AU

Begin of Day Cal Check

Method 18 Analysis for Methane and Ethane Calibration Beginning of Day Mid Calibration Check

Date Analyzed

Run#

I

2

3

Average

%RSD

RF

Run#

1

2

3

Average

%RSD

RF

Run#

2

3

Average

%RSD

RF

Ave. RF

% Drift

%RSD

Hi-Range

23

Mid-Range

Analyst:

Lo-Range

06/27/03

DJS

24.9

Methane

791472

784843

790189

788835

0.45

50.9

31680

Methane

1621639

1624256

1647188

1631028

0.86

101

32044

Methane 3160082

3163454

3144356

3155964

0.32

31247

31657

0.98

1.26

25.1

Ethane

1505997

1499655

1502800

1502817

0.21

50

59873

Ethane

3019537

3018344

3054541

3030807

0.68

60616 100

Ethane

5951798

5964006

5925914

5947239

0.33

59472

59987

1.07

0.97

Project No: M22E0133-01 Client/Loc: Ferrara Pan

Method 18 Calibration 7000000 6000000 y = 59709x5000000 Methane $R^2 = 0.9997$ ■ Ethane 4000000 Linear (Ethane) 3000000 Linear (Methane) 2000000 y = 31421x1000000 $R^2 = 0.9995$ 0 20 40 60 80 100 120 24.9 25.1 50.9 50 101 100 1631028 3155964 Methane 788835

Ethane 1502817 3030807 5947239

Page 1

Carrier Gas

Туре	Helium, UHP
Flowrate	30 mL/min
Pressure	22.5 psi

Plotter Section

Plot Speed	0.5 cm/min		
Zero Offset	15%		
Plot Signal	A		
Time Ticks?	Yes		
Instrument Event Codes	Yes		
User Number	Not used (0-0)		
Print User Number	No		
Print Report	Yes		
Print Run Log	No		

Integration

Run Mode	1 (analysis)
Peak Measurement Parameter	l (area)
Long Report Format	No
Result Calculation Type	1 (area %)
Divisor	1.000
Amount Standard	1.000
Mutliplier	1,000
Result Units	left blank
Report Unidentified Peaks	Yes
Unidentified Peak factor	0.000
Sample ID	
Subtract Blank Baseline	No
Peak Reject Value	1000
Signal To Noise Ratio	5
Tangent Peak Width	10
Initial Peak Width	8

Calibration

Method 18

Analysis for Methane and Ethane Calibration

Three Point Calibration

Page 1

End of Day Cal Check

Method 18

Analysis for Methane and Ethane Calibration
End of Day Mid Calibration Check

Date Analyzed

Run#

1

2

3

Average

%RSD

RF

Run#

1

2

3

Average

%RSD

RF

Run#

1 2

3

Average %RSD

RF

Ave. RF

% Drift

%RSD

Hi-Range

29

Mid-Range

Analyst:

Lo-Range

06/27/03

DJS

24.9

Methane

791472

784843

790189

788835

0.45

50.9

31680

Methane

1625325

1627056

1643699

1632027

0.62

101

32063

Methane 3160082

3163454

3144356

3155964

0.32

31247

31664

1.00

1.29

25.1

Ethane

1505997

1499655

1502800

1502817

0.21

50

59873

Ethane

3016529

3022460

3044055

3027681

0.48

100

60554

Ethane

5951798

5964006

5925914

5947239

0.33

59472

59966

1.04

0.91

Project No: Client/Loc: M22E133-01 Ferrara Pan

Page 1

SUMMARY OF RESULTS CALCULATIONS

Vm (std) = 17.647 × Vm ×
$$\left[\frac{P_{bar} + \frac{DH}{13.6}}{(460 + Tm)} \right]$$
 × Y

$$Vw (std) = 0.0471 \times Vlc$$

Vlc = water + silica net

$$Bws = \left[\frac{Vw (std)}{Vw (std) + Vm (std)} \right]$$

$$Md = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + [0.28 \times (100 - \%CO_2 - \%O_2)]$$

$$MS = Md \times (1 - Bws) + (18 \times Bws)$$

$$V_{S} = \sqrt{\frac{(T_{S} + 460)}{M_{S} \times P_{S}}} \times \sqrt{DP} \times C_{p} \times 85.49$$

Cp = pitot tube correction factor

Ps = absolute flue gas pressure

Ms = molecular weight of gas (lb/lb mole)

Md = dry molecular weight of gas

(lb/lb mole)

Bws = water vapor in gas stream proportion

by volume

Acfm = $Vs \times Area$ (of stack or duct) $\times 60$

Dscfm = Acfm×17.647×
$$\left[\frac{Ps}{(460 + Ts)}\right]$$
×(1-Bws)

$$Scfm = Acfm \times 17.647 \times \left[\frac{Ps}{(460 + Ts)} \right]$$

$$Scfh = Scfm \times 60 \frac{min}{hr}$$

FID - Hydrocarbon Field Data Sheet									
Project: Ferran Da N Location: Source: 1		libration Gas ID		Concentra	ation_		Manufac	turer/Ser	ial No
Operator: Date:	2 3 4 5								
Analyzer ID:	Monitor Response	Range:	5.757	3 × 10 4		Sp	rt Record oan Value art Speed	e:	
Time 1 2 3	Time	1	2	3	T	ime	1	2	3
TEST #1	Te	-57世	2			Tes	f #3		
600-700		710-	810			83	0.845/		
Incet ppm= 144.1		+ pp		235.8		et pp		199.6/	
In (at flow = 7704)	inle	++100 165/1	1 E	7512	inle	d Fla			1310
165/hr= (7.61)		165/1	110	12.14		155/	hr=		(12.84)
outset ppn = 8.3	outle	topu	=	8.1	0,3	thet p	om:	8.1/10	7 (9.9
outlet flow= 9276	outle	of floo	رح	7540		let f			7234
1/bs/hr= (.527)		lbs/hi	12	0.42		1bs/	w=		(466)
					-				
9307%	\vdash			96.51%		_			96.37
- TEST #4						-			
1118-1215									
INUE fpm = 301,2									
flow = 6813		114 178		-					
bs/hr = (14.06)									
116 7 12					-	-			
outlet pput 11.3					-		2		
How= 7695									
103/10									
(9576)									

6:49:00	192.6	10.3	
6:50:00	189.3	10.2	
6:51:00	174.9	9.7	
6:52:00	165.4	9.2	
6:53:00	156.3	8.8	
6:54:00	146	8.2	
6:55:00	139.1	7.2	
6:56:00	132	7.2	
6:57:00	129.1	7.1	
6:58:00	125.6	6.9	
6:59:00	122.6	7.1	
7:00:00	113.7	7.5	tast #1
Average	144.1	8.3	2 3 2
Minimum	40.6	0	
Maximum	315.9	16.6	

```
"08:10:00, 215.5,""", 7.8,""""

"Average , 235.8,""", 8.1,""""

"Minimum , 96.3,""", 1.2,""""

"Maximum , 511.5,""", 21.2,""""
```

9:09:00	268.5	10.7
9:10:00	438.2	13
9:11:00	426.2	19
9:12:00	405	15.7
9:13:00	392.4	14.6
9:14:00	385.1	11.8
9:15:00	428.2	12.7
9:16:00	431	12.9
9:17:00	398.3	13.3
9:18:00	347	11.2
9:19:00	320.3	9.6
9:20:00	312.8	8.7
9:21:00	289.4	8.7
9:22:00	275.1	8.5
9:23:00	262.1	8.6
9:24:00	249.9	8.6
9:25:00	236	8
9:26:00	224.1	7.7
9:27:00	213.3	8.2
9:28:00	201.6	8.2
9:29:00	285.8	9.4
9:30:00	525.5	19.9
Average	221.4	8.5
Minimum	66.3	4.3
Maximum	525.5	19.9

Test #3 2 of 2

12:04:00	220.8	9.1	
12:05:00	211.5	8.8	
12:06:00	201.8	8.5	
12:07:00	199.1	8.4	
12:08:00	203.6	7.6	
12:09:00	226.8	5.5	
12:10:00	231	5.3	
12:11:00	249.2	6.5	
12:12:00	268	8	
12:13:00	356.9	12.7	
12:14:00	437.1	15.1	Test #1
12:15:00	350	14.9	•
			2 8 2
Average	301.2	11.3	
Minimum	193.8	5.3	
Maximum	588.1	32.8	

Project No:

M22E0133

Сотрапу:

Ferrara Pan Candies

Plant:

Forest Park, IL

Source:

Oxidizer Inlet

Source Condition:

Pitot ID: Pitot Coefficient:

841A 0.84

Run No.:

Date:

Start Time:

6/26/2003

End Time:

07:13 07:21

RM Testers:

JLH

Test Parameters

P_{ber} - Barometric pressure, inches Hg 29.79 Pg - Stack Pressure, inches of H2O -6.00

Ps - Absolute stack pressure, inches Hg ts - Average stack temperature, "F

% CO₂

% O₂ % N₂

Md - dry basis lb/lb mole Ms - wet basis lb/lb mole

29.35 73.7

0.0 20.9 79.1

28.836 28.619

2.50 4.91

Moisture Determination

Method Used:

WB/DB

Wet Bulb (Deg F): Dry Bulb (Deg F):

67.00 73.00

Stack Diameter, Feet Cross Sectional Area of Stack, Ft2 **Bws - Moisture content fraction**

0.020

Port Point	ΔP (in. H_2O)	Sqrt.	Temp (°F)	Velocity (V)	Port Point	ΔP (in. H ₂ O)	Sqrt.	Temp (°F)	Velocity (V)
A 01	0.25	0.5000	76.0	28.68	B 01	0.18	0.4243	74.0	24.29
A 02	0.26	0.5099	75.0	29.22	B 02	0.20	0.4472	74.0	25.61
A 03	0.25	0.5000	75.0	28.66	B 03	0.20	0.4472	73.0	25.58
A 04	0.24	0.4899	74.0	28.05	B 04	0.23	0.4796	73.0	27.43
A 05	0.19	0.4359	74.0	24.96	B 05	0.21	0.4583	73.0	26.21
A 06	0.15	0.3873	73.0	22.16	B 06	0.20	0.4472	72.0	25.56
A 07	0.14	0.3742	74.0	21.42	B 07	0.19	0.4359	72.0	24.91
A 08	0.29	0.5385	75.0	30.86	B 08	0.19	0.4359	72.0	24.91

Method 2 Results	
Average ΔP	0.2106
Average Sqrt ΔP	0.4569
Average Velocity Vs (ft/sec)	26.149
Q - ACFM	7,701
Qsd - DSCFM	7,324
Qs - SCFM	7,474
Qs - SCFH	448,431

Project No:

M22E0133

Company:

Ferrara Pan Candies

Plant:

Forest Park, IL

Source:

Oxidizer Inlet

Source Condition:

Pitot Coefficient:

Pitot ID:

841A 0 84

Run No.:

Date:

Start Time: End Time:

6/26/2003 11,27

1134

RM Testers:

JLH

Test Parameters

P_{bar} - Barometric pressure, inches Hg 29.79 P_g - Stack Pressure, inches of H₂O -6 00

Ps - Absolute stack pressure, inches Hg 29.35

ts - Average stack temperature, °F 77.9 % CO₂ 0.0

% O2 20.9 79.1

Md - dry basis lb/lb mole 28.836 Ms - wet basis lb/lb mole 28.619 Stack Diameter, Feet 2.50

Cross Sectional Area of Stack, Ft²

A 08

4.91 **Bws** - Moisture content fraction 0.020 Moisture Determination

Method Used:

WB/DB

Wet Bulb (Deg F):

67.00

Dry Bulb (Deg F):

73.00

Port	Point	∆P (in. H₂O)	Sqrt.	Temp (°F)	Velocity (V)
A	01	0 22	0.4690	80.0	27.01
A	02	0.23	0.4796	81.0	27.64
A	03	0.21	0.4583	80.0	26.39
A	04	0.19	0.4359	80 0	25.10
A	05	0.16	0.4000	80 0	23.03
A	06	0.13	0.3606	790	20.74
A	07	0.13	0.3606	790	20.74

0.3873

79.0

22.28

0.15

Port	Point	ΔP (in. H ₂ O)	Sqrt.	Temp (°F)	Velocity (V)
В	01	0.18	0.4243	77.0	24.36
В	02	0.19	0.4359	77.0	25.03
B	03	0.19	0.4359	77.0	25.03
В	04	0.20	0.4472	77.0	25.68
В	05	0.17	0.4123	76.0	23.65
8	06	0.16	0.4000	76.0	22.95
В	07	0.15	0.3873	76.0	22.22
В	08	0.17	0.4123	73.0	23.59

Method 2 Results	
Average ∆P	0.1769
Average Sqrt ΔP	0.4191
Average Velocity Vs (ft/sec)	24.081
Q - ACFM	7,092
Qsd - DSCFM	6,692
Qs - SCFM	6,828
Qs - SCFH	409,707

Operating Level: Project No: M22E0133 **Need to Enter** Company: Ferrara Pan Candies Run No.: Plant: Forest Park, IL Date: 6/26/2003 Source: Oxidizer Outlet Start Time: 07:25 Pitot ID: 841A **End Time:** 07:30 **Pitot Coefficient:** 0.84 RM Testers: JLH **Test Parameters** Moisture Determination P_{bar} - Barometric pressure, inches Hg Meter Calibration: 0.993 29.79 Pg - Stack Pressure, inches of H2O Initial Meter Volume: 248.300 -0.30 Ps - Absolute stack pressure, inches Hg Final Meter Volume: 250.756 29.77 t, - Average stack temperature, "F 202.9 Meter Temperature: 87.50 % CO₂ 0.0 Meter Volume Vm(std): 2.343 % O2 20.9 Meter Volume Vw(std): 0.071 % N2 79.1 Delta H: 0.05 Md - dry basis lb/lb mole 28.84 Train Initial Wt: 521,700 Ms - wet basis lb/lb mole 28.521756 Train Final Wt: 523.200 Stack Diameter, Feet 2.50 Condensate Initial Vol: 0.000 Cross Sectional Area of Stack, Ft² 4.91 Condensate Final Vol: 0.000 **Bws** - Moisture content fraction 0.029 ΔΡ ΔΡ Velocity Sqrt Temp Sqrt. Temp ("F) ΔP **Port Point** (in, H₂O) (in. H2O) ("F) **Port Point (V)** A 01 0.22 0.4690 196.0 29.61 A 02 0.24 0.4899 198.0 30.97 A 03 0.27 0.5196 201.0 32.92 A 04 0.25 0.5000 204.0 31.75 A 05 0.15 0.3873 204.0 24.60 0.5385 A 06 0.29 205.0 34.22 A 07 0.29 0.5385 208.0 34.30 A 08 0.30 205.0 0.5477 34.81 B 01 0.33 0.5745 206.0 36.54 B 02 0.38 0.6164 205.0 39.18 B 03 0.30 0.5477 207.0 34.86 B 04 32.46 0.26 0.5099 207.0 B 05 0.28 0.5292 203.0 33.58 B 06 0.25 0.5000 200.0 31.66 B 07 0.25 0.5000 199.0 31.63 B 08 0.18 0.4243 198.0 26.82

Velocity

(V)

Method 2 Results	
Average ∆P	0.2650
Average Sqrt ∆P	0.5120
Average Velocity Vs (ft/sec)	32.482
No WAF Applied to this Test	
Q - ACFM	9,567
Qsd - DSCFM	7,362
Qs - SCFM	7,581
Qs - SCFH	454,884

Qsd - DSCFM

Qs - SCFM

Qs - SCFH

Project No: M22E0133 **Operating Level: Need to Enter** Company: Ferrara Pan Candies Run No.: Plant: Forest Park, iL Date: 6/26/2003 **Start Time:** 08:40 Source: **Oxidizer Outlet** Pitot ID: 841A End Time: 08:46 **Pitot Coefficient:** 0.84 RM Testers: JLH **Test Parameters Moisture Determination** P_{bar} - Barometric pressure, inches Hg 29.79 Meter Calibration: 0.993 Pg - Stack Pressure, inches of H2O -0.30Initial Meter Volume: 250.851 Ps - Absolute stack pressure, inches Hg 29.77 Final Meter Volume: 253.316 t, - Average stack temperature, "F 199.3 Meter Temperature: 87.00 % CO2 0.0 Meter Volume Vm(std): 2.354 % O2 20.9 Meter Volume Vw(std): 0.066 % N2 Delta H: 0.05 79.1 28.84 Train Initial Wt: 523.200 Md - dry basis lb/lb mole Train Final Wt: 524.600 Ms - wet basis lb/lb mole 28.54 Stack Diameter, Feet 2.50 Condensate Initial Vol: 0.000 Condensate Final Vol: 0.000 Cross Sectional Area of Stack, Ft2 4.91 0.027 **Bws** - Moisture content fraction ΔP ΔP Sqrt. Velocity Temp Velocity Sqrt Temp Port Point ΔP **Port Point** (in. H₂O) ("F) (in. H₂O) ("F) (V) **(V)** A 01 0.20 0.4472 198.0 28.26 A 02 0.23 0.4796 200.0 30.35 A 03 0.24 0.4899 201.0 31.03 A 04 0.23 0.4796 202.0 30.40 A 05 0.24 0.4899 201.0 31.03 A 06 0.28 0.5292 203.0 33.57 A 07 0.27 0.5196 207.0 33.06 A 08 0.26 0.5099 200.0 32.27 B 01 0.24 0.4899 200.0 31.01 0.26 199.0 32.25 B 02 0.5099 B 03 0.24 0.4899 198.0 30.96 B 04 198.0 29.64 0.22 0.4690 B 05 0.21 0.4583 198.0 28,96 B 06 0.19 0.4359 198.0 27.55 0.17 B 07 0.4123 193.0 25.96 B 08 0.16 0.4000 193.0 25.18 **Method 2 Results** Average ΔP 0.2275 Average Sqrt AP 0.4756 Average Velocity Vs (ft/sec) 30,080 No WAF Applied to this Test Q-ACFM 8,859

6,868

7,059

423,519

CALIBRATION PROCEDURES

PITOT TUBES

The pitot tubes used during this test program are fabricated according to the specification described and illustrated in the *Code of Federal Regulations*, Title 40, Part 60, Appendix A, Methods 1 through 5 as published in the *Federal Register*, Volume 42, No. 160; hereafter referred to by the appropriate method number. The pitot tubes comply with the alignment specifications in Method 2, Section 4; and the pitot tube assemblies are in compliance with specifications in the same section.

Pitot tube assemblies are calibrated in accordance with Method 2, Section 4, against a standard hemispherical pitot utilizing a wind tunnel meeting the specification in Method 2, Section 4.1.2.

TEMPERATURE SENSING DEVICES

The potentiometer and thermocouples are calibrated against a mercury thermometer in a calibration well. Alternatively, readings are checked utilizing a NBS traceable millivolt source.

DRY GAS METERS

The test meters are calibrated according to Method 5, Section 5.3 and "Procedures for Calibrating and Using Dry Gas Volume Meters as Calibration Standards" by P.R. Westlin and R.T. Shigehara, March 10, 1978.

ANALYTICAL BALANCE

The accuracy of the analytical balance is checked with Class S, Stainless Steel Type 303 weights manufactured by F. Hopken and Son, Jersey City, New Jersey.

Form 1057 © GE Mostardi Platt

METER BOX CALIBRATION

Dry Gas Meter No.

Standard Meter No.

Standard Meter (Yr)

F19 2962156 0.9946 Date:
Calibrated By:
Barometric Pressure:

06-12-03 PSH 29.14

Run Number	Orifice Setting in H20 Chg (H)	Standard Meter Gas Volume Vr	Dry Meter Gas Volume Vd	Standard Meter Temp. F	Dry Gas Meter Inlet Temp. F tdi	Dry Gas Meter Outlet Temp, F tdo	 Time Min.	Time Sec.	Y
Final		78.524	35.434	70	84	78			

Final			78.524	35.434	70	84	78			
Inital			76.137	32.984	70	81	76			- 1
Difference	1	0.10	2.387	2.450	70	83	77	80	20	 0.992
Final			80,906	37.882	70	86	79			
Inital			78.524	35.434	70	84	78			
Difference	2	0.10	2,382	2.448	70	85	79	82	20	0.994
Final			83.291	40.342	70	87	80			
Inital			80.906	37.882	70	86	79			. 1
Difference	3	0.10	2.385	2.460	70	87	80	83	20	0,993

Average

0.993

SOURCE IDENTIFICATION: Ferrara Daw / INUST DATE: 6-26-03

RUN: 1-3 OPERATOR: Stu

CALIBRATION SUMMARY (METHOD 25A)

	Identification	Cylinder No.	Name of Gas	Time	Cylinder Value (Units)	Analyzer Response Unit	Calibration Error (% of cal value)	Drift (% of span)
0.	Zero Gas		Zero	534	0.0	2.8	7.17	
Wie -	Low	3481	C3Hg	542	286.7	288.2		
0	Mid	Almoo 7644	1	548	496.1	497.1	13	
	High	ALMOHER		837	8320	831.2		
-	Zero Gas		200	704	0.0	0.2		
Post	Low		CoHe	708	286.7	287.6		
12	Mid		1			·		
	High		V					
0.4	Zero Gas		Zero	815	0.0	-0.3		
Yos	Low		Carte	819	286.7	284.7		
2	Mid							,
	High		4					
200	Zero Gas	- X	2ero	938	0.0	-0.6		
, soy	Low		CaHB	942	286.7	2-76-6		
Post	Mid							
	High		V					
	Zero Gas		Zero	1219	0.0	0.0	2	
7057	Low		Cztle	1223	286.7	2825		
14	Mid		1					
,	High		V					
	Zero Gas							
	Low							
	Mid							20.
	High							f

Mostardi Platt performs all calibrations through the complete sampling system and, therefore, no sample system bias exists and none is applied to the results.

Calibration Error =
$$\left[\frac{\text{Analyzer Response} - \text{Cylinder Value}}{\text{Cylinder Value}}\right] \times 100 \text{ (must be } < 5\%\text{)}$$

Drift =
$$\frac{\left[\frac{\text{Pretest Analyzer Response} - \text{Post Test Analyzer Response}}{\text{Span Value}} \right] \times 100 \text{ (must be } < \pm 3\% \text{)}$$

SPAN: 0-1000

100	!! A	4 !	A	D:-#001
VOC		1 min ppmv		Bin#001
VOC		t 1 min ppm	Avg	Bin#002
6/26/2		0.4		0.2
	0:00	3.4		
	1:00	3.2		0.2
	2:00	3.2		0.1
	3:00	2.8		0.1
	4:00	2.8		0
	5:00	435.6		0
	6:00	828.8		0
	7:00	831.2		0
	8:00	43.5		0
	9:00 0:00	3.4 276.4		12.6
• • •	1:00	287.3		88.9
	2:00	288.2		89.2
	2.00 3:00	39.6		90.2
	4:00	5.6		23.4
	5:00	5.2		28.9
	6:00	459.3		29.2
	7:00	498.2		29.4
	8:00	497.1		10.8
•	9:00	65.2		0.5
	0:00	8.4		19.3
	1:00	7.4		49.2
	2:00	6.9		49.9
	3:00	6		38.6
	4:00	5.2		0.8
	5:00	98.1		2.8
	6:00	272.2		12,1
	7:00	250.5		11.6
	8:00	235.1		11.2
	9:00	217.9		11.4
0.0	0:00	206.6		13.6

Linearly /Prel

		min ppmv min ppm	Avg Avg	Bin#001 Bin#002		
6/26/2						
8:1	0:00	215.5		7.8		
8:1	1:00	306.7		3.6		
8:1	2:00	430.6		-0.2		
8:1	3:00	238.5		2.5	D 7	2/Pre 3
8:1	4:00	2.1		28.6	1501	diffe
8:1	5:00	-0.3		29.5		
8:1	6:00	137.1		29.7		
8:1	7:00	353.3		29.8		
8:1	8:00	285.2		13.2		
8:1	9:00	284.7		11.9		
8:2	0:00	331.1		11.5		

VOC i	nlet 1 r	nin ppmv	Avg	Bin#001		
VOC 1	outlet 1	min ppm	Avg	Bin#002		
6/26/20	03					
12:15:	:00	350		14.9		
12:16:	00	326.6		10		
12:17:	:00	302.8		9.6		
12:18:	00	53.8		29.3		
12:19:	:00	0		29.5	623	4
12:20:	00	171		18	40-	
12:21:	:00	275.8		-0.1		
12:22:	.00	281.7		0.2		
12:23:	:00	282.5		0.1		

RATA CLASS

Scott Specialty Gases

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

Customer

P.O. No.:

MOSTARDI PLATT STOCK

SCOTT SPECIALTY GASES C/C

SCOTT SPECIALTY GASES

Project No.: 05-98085-014

MOSTARDI PLATT STOCK

1290 COMBERMERE STREET TROY,MI 48083

868 SIVERT DRIVE

WOOD DALE IL 60191

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure G-1; September, 1997.

Cylinder Number:

ALM007644

Certification Date:

10/14/02

Exp. Date: 10/13/2005

Cylinder Pressure***: 1900 PSIG

ANALYTICAL

COMPONENT

CERTIFIED CONCENTRATION (Moles)

ACCURACY**

TRACEABILITY

PROPANE

PPM

+/- 1%

Direct NIST and NMi

AIR

496.1

BALANCE

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards.

REFERENCE STANDARD

TYPE/SRM NO. **NTRM 1200**

EXPIRATION DATE 8/01/05

CYLINDER NUMBER

AAL14642

CONCENTRATION

COMPONENT

PROPANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

VARIAN/6000/08963016A

DATE LAST CALIBRATED

1193. PPM

09/19/02

ANALYTICAL PRINCIPLE

FLAME IONIZATION

ANALYZER READINGS

First Triad Analysis

(Z=Zero Gas

R=Reference Gas T=Test Gas

r = Correlation Coefficient)

Second Triad Analysis

Calibration Curve

PROPANE

Date:10/14/02

Response Unit:AREA

Z1~0.00000 R1 = 4564720. T1 = 1896823 T2=1896926.

R2=4660784. 22=0.00000 Z3=0.00000 T3=1898262.

R3 = 4557717.

Avg. Concentration:

Concentration = A+Bx+Cx2+Dx3+Ex4

r= 1.000

A = -0.2110969

Constants: B = 2.58E-4

C=0.0

E= 0.0

APPROVED BY:

RATA CLASS

Scott Specialty Gases

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

P.O. No .:

MOPLATT STOCK

Customer

SCOTT SPECIALTY GASES C/C

SCOTT SPECIALTY GASES

1290 COMBERMERE STREET

TROY,MI 48083

Project No.: 05-94665-002

MOSTARDI PLATT STOCK

868 SIVERT DRIVE

WOOD DALE IL 60191

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure G-1; September, 1997.

Cylinder Number:

ALM024491

Certification Date:

7/30/02

Exp. Date:

7/29/2005

Cylinder Pressure ***: 1900 PSIG

ANALYTICAL

ACCURACY**

TRACEABILITY

COMPONENT PROPANE

CERTIFIED CONCENTRATION (Moles)

PPM

+/- 1%

Direct NIST and NMi

AIR

29.94

BALANCE

*** Do not use when cylinder pressure is below 150 psig.

8/01/05

* Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards.

REFERENCE STANDARD

TYPE/SRM NO. NTRM 1668

EXPIRATION DATE

CYLINDER NUMBER ALM010723

CONCENTRATION

COMPONENT

PROPANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

VARIAN/6000/08963016A

DATE LAST CALIBRATED

99.50 PPM

07/30/02

ANALYTICAL PRINCIPLE

FLAME IONIZATION

ANALYZER READINGS

(Z = Zero Gas

R=Reference Gas T=Test Gas

r = Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

Callbration Curve

Concentration = A + Bx + Cx2 + Dz3 + Ex4

PROPANE Date:07/31/02

Response Unit:HT

21-0.00000 R1 -758508.0 R2=761699.0 Z2-0.00000

Z3=0.00000

Avg. Concentration:

T3 = 228556.0

T1=228270.0 T2 - 228288 0

29.94

r = .999995

Constants

A=0.0804372 C=0

B=1.31E-4

Special Notes:

SEND CERT WITH CERT

APPROVED BY:

65

RATA CLASS

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF	ACCURAC	CY: EPA Protoc	col Gas		
Assay Laboratory			Custon		
	P.O. No			SPECIALTY GASES	C/C
SCOTT SPECIALTY GASES		No.: 05-97588-013			
1290 COMBERMERE STRE	EET			ARDI PLATT STOCK	
TROY,MI 48083			000 0.	VERT DRIVE	
			WOOD	DALE IL 60191	
ANALYTICAL INFORMA					
This certification was perform		o EPA Traceability Proto	ocol For Assay & Certi	fication of Gaseous Ca	libration Standards;
Procedure G-1; September, 19			-		
7	ALM065384	Certification	Date: 070ct	2002 Exp. Da	ate: 060ct2005
Cylinder Pressure**:	1900 PSIG				
COLUMNICATION		PRESIDENCE AND	DATION MALE.	ANALYTICAL	TO A OF A DU ITY
COMPONENT	<u>u</u>	ERTIFIED CONCENT		ACCURACY**	TRACEABILITY
PROPANE		89.82	PPM BALANCE	+/- 1%	Direct NIST and NMi
AIR			BALANCE		
*** Do not use when cylinder pres	sure is below 150	O psia.			
** Analytical accuracy is based on			e G1. September 1997.		
Product certified as +/- 1% ans	•		, ,		
REFERENCE STANDARD					
TYPE/SRM NO. EXPIRATION	ON DATE C	YLINDER NUMBER	CONCENTRATION	COMPONEN	T ₂
NTRM 1668 01Aug2005	, A	LM010723	99.50 PPM	PROPANE	
INSTRUMENTATION					
INSTRUMENT/MODEL/SERIAL#	<u>t.</u>		DATE LAST CALIB	RATED	ANALYTICAL PRINCIPLE
VARIAN/6000/08963016A			12Sep2002		FLAME IONIZATION
ANALYZER READINGS					
	(Z = Zero (Gas R=Reference	Gas T=Test Gas	r = Correlation Co	efficient)
First Triad Analysis		Second To	riad Analysis	Cal	ibration Curve
PROPANE					
Date: 070ct2002 Response Unit:A	VREA .			Concentratio	n = A + Bg + Cx2 + Dx3 + Ex4
Z1=0.00000 R1=3832630.	T1 = 3450493.			r=.999996	
R2 = 3830647.	T2=3451770.	1		Constants:	A=-0.0276201
Z3=0.00000 T3=3454418.	R3 = 3820000.			B=2.536-5	C=0.0
Avg. Concentration: 89.82	PPM			D=0.0	E=0.0

APPROVED BY:	
APPROVED DI.	

	_			OI III					
Project: _/									
Location: _									
Date: _ 6-	26-03		Test No:		2	Tim	e: 125	- 73	0
Point No.	ΔР	√∆P	t _s	α	Point No.	ΔР	√∆P	t _s	α
1-1	. 25		7610						
2	124		751						
4 5	125		75.						
4	124		74.						
5	119		74			1			
6	.15		73:						٠
7	.14		74.						
8	, 29		75						
2-1	118		74						
2	100		74						
3	,20		13						
3 4 5	.23		73						
	,21		73						
6	120		74						
7	,19		74		-		<u> </u>		
8	1/1		72						
	,4519		74	-					
									*
	N								
P _{bar} 29.79 "H 0.44 × 0	g Static_= %CO ₂ =	1,3 "H ₂ O	P_g	Hg P _s		Pitot ID_84/ T °R	Cp1846	Flue Area	DF/9. 14.908 ft
0.32× 26.4	%O ₂ =+						Duct Dim	ensions_	
0.32 × 26.4 0.28 ×	$%N_2 = +$		B _{ws}	1 - B _{ws}			Disturbance	-	
(IVIU	1-DW9)	1 (10 \	DWS	- (IAT2)	1 612		Downstrea	ım
	v_s	= 85.49 ×	Cp×√	Ms:)Ts °R ×Ps	$\sqrt{\Delta P} = $	ft/sec (V	s)	
Q _{acfm} =	Vs ×	Flue Are	$a \times 60 =$	7660	acfm		Port Leng		Inches
$Q_{scfm} = 17.647$	× ACFM ×	$\frac{Ps}{Ts \circ R} = $	1540	SCFM					
$Q_{dscfim} = 17.64$	7 × ACFM	$\times \frac{Ps}{Ts \circ R} \times ($	1-Bws) =	732!	DSCFN	M			
Pre-test leak c			,						
Post-test leak	check	Ή ₂ Ο	61		Data Taken	By: 14	4		

13

Project:	Ferrara	Carola			***
Location:	Bxidiza	Inlet			
Date: 6-	-26-03	Test No:	4	Time:	1127 - 1134

Point No.	ΔР	$\sqrt{\Delta P}$	t _s	α	Point No.	ΔΡ	√∆P	t _s	α
1-1	. 22		80						
2	,23		81						
3 4 5	,21		80						
4	.19		80	37					
5	. 16		કિ	18.50					
6	.16		79			11.1			
7	.13		79						
2	. 15		79			7/1			
2-1	.18		77						
2	.19		17						
3 4	.19		77						
4	120		77			j			
5	,17		76						
6	./6		76						######################################
7	.15	11.00	76						
8	,/7		73						
	,4191		80						3:
			-		11			-	

Pbar 29.19 "Hg Static "	H ₂ O P ₂	"Hg Ps	"Hg Pitot	ID C _p	Temp. ID_	
$0.44 \times 0 \%CO_2 =$	$\sqrt{\Delta P}$	t_s	°F T	°R	Flue Area	$_{-}$ ft^2
$0.32 \times 0.9 \%O_2 = +$				Duct I	Dimensions	
$0.28 \times _{_{_{_{_{_{_{_{1}}}}}}}} \%N_{2} = +_{_{_{_{_{_{_{_{_{1}}}}}}}}}$	B _{ws}	_ 1 - B _{ws}		Disturba	nce: Upstream _	
(Md×1-	Bws) + $(18 \times _{\underline{}}$	Bws) =	(Ms)		Downstream	
$v_s = 85.4$	19 ×Cp×	Ms ×)Ts °R	VAP = AMIION sec	:(Vs)	
$Q_{acfm} = $ Fh	ue Area × 60 = _	7100	acfm	Port Le		Inches
$Q_{\text{scfm}} = 17.647 \times \text{ACFM} \times \frac{P_{\text{S}}}{T_{\text{S}}}$	R					
$Q_{dscfm} = 17.647 \times ACFM \times \frac{Ps}{T_0}$	$\frac{1}{2}$ × (1-Bws) =	6698	DSCFM	NS		
Pre-test leak check		7		1.11		
Post-test leak check	WB 6	ζ	Data Taken By:	16/1		
Form 1012	015	71			@ GE I	Moctordi Platt

Form 1012

Bus = .017

Project: _F	ellera								
Location:	Ox, J, z	n Di	tlet						
Date: _ 6 -					2	Tim	ne: _7/	3 - 72	?/
Point No.	ΔΡ	√∆P	t _s	α	Point No.	ΔΡ	$\sqrt{\Delta P}$	ts	α
1-1	124		196			,			
2	,24		198						
3 4 5 6	・スフ		201						
4	125		2041						
35	115		2041						
W.	.29		205						
7	.29		268						
8	130		205					<u></u>	
2-1	.33		206						
2	,38		205						
3,	,30		207		э я				
4	126		207						
5	,28		203						
1	125		200						
7	,25		199						
. 8	118		198						×
			2-2						
	12140		203				-		1
-									
-			-						
					-				
	11		.1		26				
Phar 19, 78 "H	lg Static_	6 "H2O	Pg	"Hg Pa J'	TIP "Hg]	Pitot ID 841	4 Cp : 84	70 Temp.	ID F15
0.44×	$^{\circ}_{CO_2} = $		$\sqrt{\Delta P}$	t	°F	T°R		Flue Are	a 4.905 ft2
037 × 20.4	$^{0}/_{0}\Omega_{0} = +$						Duct Din	nensions _	30
0.28 ×	_ ^{%01N2} = +_ Md ×	1-Rws)	+ (18 ×	_ 1 - B _{ws} _	(Ms)			Dommetre	m
			(10 //	()Ts ° R	_ 7	1.6393		
	\mathbb{V}_{S}	= 85.49 ×_	^{Cp×} √	Ms ×	Ps ×	√∆P = <u>≥</u>	1.6393 ft/sec(V	(s)	
Q _{acfem} =		Flue Are	$ea \times 60 = $	9611	acim		Port Leng		Inches
$Q_{scfm} = 17.647$	× ACFM ×	$\frac{Ps}{Ts \circ R} =$	7512	SCFM					
$Q_{dscfm} = 17.64$	$7 \times ACFM >$	$\langle \frac{Ps}{T_s \circ P} \times \langle \frac{Ps}{T_s$	(1-Bws) =	73841	DSCFN	M			
Pre-test leak c		Y 0							
Post-test leak	check / "	H ₂ O	WB .6	,	Data Taken	Ву:	1		
Form 1012				.073				©	GE Mostardi Platt

		OXidi					9 ,,	24	,,
te:			Test No: _		4	Tim	e: <u> </u>	0-8	16
Point No.	ΔΡ	√∆P	t _s	α	Point No.	ΔР	√∆P	t _s	α
1-1	120		198				İ		
2	,23		200						
3	124		201						
9	.23		201						
6	124		201						
6	128		203					V.	
7	,27		207						
8	126		200						
2-1	124		200						_
2	126		199						
3	.24		198						
4	.22		198						
- S	121		198						
L'i.	, 19		198						
7	,17		193						
8	./6		193						
	lia d		160						
	.4/56		199						
								-	
"29.7 9 "H	.475b	1.3 "H ₂ O	199 P _E "	Hg P _a	″Hg P	ritot ID_84/	Й_ C _p , 84	Temp. I	D /- 4,
× One	$\%CO_2 =$		√ ∆P		°F ′	IºR	Durat Di	Flue Area	11708
× auig	$\frac{\%O_2}{\%N_0} = +$		B	1 - R			Disturbance		
^	Md×	1-Bws)	+ (18 ×	Bws)	=(Ms)			Downstream Downstream	
	Vs	= 85.49 ×_	Cp×√_	Me)Ts ° R ×Ps	$\sqrt{\Delta P} = \frac{1}{2}$	50.0101 R/sec(V	's)	
_ =	Vs×	Flue Are	$ea \times 60 =$	5223	acfm		Port Leng		Inches
a = 17.647	× ACFM ×	$\frac{Ps}{Ts \circ R} =$	7062	SCFM	acfm		}-	· -	
$_{\rm fm} = 17.64^{\circ}$	$7 \times ACFM$	$\times \frac{Ps}{Ts \circ R} \times ($	1-Bws) =	6871	DSCFM	ſ			
test leak cl	heck / "	H_2O					£		
	check V				Data Taken	By: JLH			

1	N	1	n	IS	TI	TRI	F	TEL	D	DA	ATA	SH	EF
a	ΓA	т.	v	LU	1	-10	_ 1	KILSE		-	X I / X	DIL	

Project:	F (1950	Carro	1	STURE FIEI			6-26-03
Sampling L	ocation: 0	(idizer	della				
Source Con	dition: New	my				Monitor:	Model
	eter No. F			Y = _ , '	793		l No
Tost (Days) N	lo3	Poron	notria Program	(P) 29	1 79	in. Hg	Orsat Analysis
Gas Tempera	ture	oF St	atic Pressure	$e(P_{bar})$ $\frac{2^{\circ}}{-3}$	(1)/	in. Hg	%CO ₂ %O ₂
Gas Tempera	Meter	Meter Gage	Meter	Impgr.	1	III. 11g	700027002
Clock Time	Volume	Pressure	Temp.	Outlet			
1 to (3).	(V _m)	(ΔH)	(t _m)	Temp	Cont. and		Ciliar Callan Taria
24 hour	A ³	in H ₂ O	°F	°F	Condensate		Silica Gel or Train
8 10	250.84	.05		£680=			E 0:1:
850	253,316	05	89/86	Sully Fed		mls	(V_f) $52^{1/2}$ grams (W_f)
						mls	5 (V _i) - 5 23.2 grams (W _i) /. 4 grams
					i	mls	. 4 grams
					× 0.04707 =		× 0.04715 =
							ft³ [V _{wsg(std)}]
						()3	ft ³ [V _{w(sid)}]
					V _{m(std)} =	ft ³	
					-	, proportion	by volume
					Leak Check:		$B_{ws} = 0,027$
					125"		
	1				/	<i></i>	Moisture correction factor:
					100	- 5	1-B _{ws} = 0.9727
					Comments:		
Avg.	1.465	,65	87	(T _m)	°R		
Test (Run) N		Baron	netric Pressure	(P _{bar})		in. Hg	Orsat Analysis
Gas Tempera			atic Pressure			in. Hg	%CO ₂ %O ₂
Clock Time	Meter	Meter Gage	Meter	Impgr			
24 hour	Volume	Pressure	Temp	Outlet			
24 HOUI	(V _m)	(ΔH) in. H ₂ O	(t _m) °F	Temp	Condensate		Silica Gel or Train
1117	253.336	105	89/86				
1147	255.805	104	88186			mls	(V _f) 5241, 6 grams (W _f)
T.C.T	1337603	105	76/7				(V _i) _526.0 grams (W _i)
							7. 4 grams
					× 0.04707 =		×0.04715 =
	-						ft ³ [V _{wsg(std)}]
					ⁿ	L wc(std).	
						0.1	$= \underbrace{\qquad \qquad }_{\mathfrak{A}^3} \left[\mathbf{V}_{\mathbf{w(std)}} \right]$
				ļ	V _{m(std)} = Water Vapor		
							The second secon
					Leak Check:		$B_{ws} = 0.27$
					185		N
					185"	1,511	Moisture correction factor: $1 - B_{ws} = \frac{9727}{}$
					Comments:	V-	1 - D _{W2} = _ · / / / /
Avg. 2	W	0.1	87.25'	(T _m)	°R	7	
YAR. X	. 469	0.05	81.43	(m1)	K		

$$V_{m(std)} = 17.64 V_m Y \frac{P_{bar} + \frac{DH}{13.6}}{T_m}$$

$$B_{ws} = \frac{V_{w(std)}}{V_{w(std)} + V_{m(std)}}$$
77

Operator JLM

PROCEDURE T DATA SHEET

Project: Ferrage Pan Candres Location: Big Chacolde Room	Sketch enclosure, all ducts, NDOs and potential VOC emission points on accompanying page.
Date: <u>4/26/03</u>	Label all dimensions.
Enclosure Designation: PTE Control Devices (s):	Process(es) Enclosed:

NDO to VOC Emission Point

				Dis		
NDO	Dimensions	Equivalent Diameter	VOC Emission Point	Minimum	Actual	Pass/ Fail?
Door	1" 1 6.5"	0.870	Polishan	3,32,2	186"	Paus
Hole in Room	16"	1.396	Pulisher	5.581	264"	Pass
D _{ou} ,	2" 435"	0.553	1,	2.207	186"	Pass

NDOs equivalent diameter = $\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

NDO to Exhaust (TTE only)

				Distances		
Exhaust Point		Minimum	Actual	Pass/ Fail?		
	-	 				
				-		-
		**		4		

Equivalent diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO or Exhaust Point)

Direction of Air through NDO

	Nori	mally	Di	rection of Air Flow			
NDO No.	Open Closed		Into Enclosure Out of Enclosure Swirled			NDO Required to be Normally Closed?	All Points?*
		\	V			100	ry.
	V					No	Yas
		1					
	No.	No. Open	Normally No. Open Closed	No. Open Closed Into Enclosure	No. Open Closed Into Enclosure Out of Enclosure	No. Open Closed Into Enclosure Out of Enclosure Swirled	No. Open Closed Into Enclosure Out of Enclosure Swirled NDO Required to be Normally Closed? \[\sqrt{1}

Status of doors and windows

Are all access doors and windows whose areas are not included as NDOs closed during normal operation. \square Yes \square No

Capture of VOC Emissions

Does all exhaust ductwork go to control (for PTE) or to a point where it can be measured (for TTE). ☐ Yes ☐ No

^{*}Check to verify that airflow was checked at top, bottom, middle, and both sides of enclosure.

PROCEDURE T DATA SHEET

Project: Ferra Pan Condres Location: West Polishing Room Date: 6/26/03	Sketch enclosure, all ducts, NDOs and potential VOC emission points on accompanying page. Label all dimensions.
Enclosure Designation: Control Devices (s):	Process(es) Enclosed:

NDO to VOC Emission Point

		Equivalent Diameter	VOC Emission Point	Dis		
NDO	Dimensions			Minimum	Actual	Pass/ Fail?
Door #1	4 8.25 (2)	0.135 (4)	Palishin Tubs	0.54'	7,5'	Pas
100	13" × 12"	0.399	20	1. 596	7.51	Pass
	18"×30."	0.82	4	0.728'	7,5'	Pass
Day #2	4"x8" (2)	0,135(2)	*)	0.57	7.51	Pass
	1 × 30"	0.81	~	0,7181	7.50	Pess

NDOs equivalent diameter $= \left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

NDO to Exhaust (TTE only)

						Distances		
Exhaust Point	Dimensions	Equivalent Diameter	NDO	Dimensions	Equivalent Diameter	Minimum	Actual	Pass/ Fail?
-			*		1		1 10100	
-			ge					4

Equivalent diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO or Exhaust Point)

Near Ratio [NDO Area/Total Enclosure Area]

NDO	Surface Area (FT²)	Wall, Ceiling, or Floor Section	Surface Area (FT²)	
Over #1	0.014	89'10" × 10'	898.33	
	0.614	32'x 16'	3-20.0	NEAR ratio:
	0105	32'210'	3,20.0	
	0.026	13"46"	10.83	NDOArea EnclosureArea
Door +1	0.014	46 10	410.83	
	QUIN	38'9" x10'	381.7	Allowable NEAR ratio ≤ 0.05,
	0.026	89 10 1x 32 (2)	5749.34	
		,		Pass/Fail? Pars
TOTAL NDO	DAREA=0,233	TOTAL ENCLOSURE	AREA= ioqc.23.	

Velocity of Air through NDO

	Exhausted	Air	Make	Up Air	
Exhaust Point	SCFM	Controlled? (Y/N?)	Make up point	SCFM	
					total NDO area ft ²
		-			(from section 5.2)
a .					
					$\frac{\text{Exhaust scfm} - 1 \text{ make up scfm}}{\text{NDO area (ft}^2)} = \frac{\text{fpm}}{\text{pm}}$
					fpm should be ≥ 200
					pass/fail?
TOTAL			TOTAL		

Micromanumite Rentings

Test 1: 0,008, 0.016

Test 107: 0.022, 0.020

Test 103: 0.020, 0.018

Form 1099-2 Test & 4 , 0, 622, 0,021 © GE Mostardi Platt

Direction of Air through NDO

Method used to check direction of airflow:

		Nori	maily	Đi	rection of Air Flow			
NDO	No.	Open	Closed	Into Enclosure	Out of Enclosure	Swirled	NDO Required to be Normally Closed?	All Points?
Door Al	¥		1	/			Yes	74
2050#2			V	V				
		~-	-					(F)
								-
			1					

Status of doors and windows

Are all access doors and windows whose areas are not included as NDOs closed during normal operation.
X Yes
No

Capture of VOC Emissions

Does all exhaust ductwork go to control (for PTE) or to a point where it can be measured (for TTE). Yes \square No

^{*}Check to verify that airflow was checked at top, bottom, middle, and both sides of enclosure.

PROCEDURE T DATA SHEET

Project: Ferrary Pan	Candies	Sketch enclosure, all ducts, NDOs and potential
Location: George Pan	Checolate Room	VOC emission points on accompanying page.
Date: 6/4.6/03		Label all dimensions.
Enclosure Designation: Control Devices (s):	PTU	Process(es) Enclosed:

NDO to VOC Emission Point

		i		Dist		
NDO	Dimensions	Equivalent Diameter	VOC Emission Paint	Minimum	Actual	Pase Fail?
Door	1" Y6'	Asign	Polithe	383,7	1-14"	Pass
35						

NDOs equivalent diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

NDO to Exhaust (TTE only)

						Dista	Distances	
Exhaust Point	Dimensions	Equivalent Diameter	NDO	Dimensions	Equivalent Diameter	Minimum	Actual	Pass/ Fail?
-					W			
		_						
						,		

Equivalent diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO or Exhaust Point)

Near Ratio [NDO Area/Total Enclosure Area]

NDO	Surface Area (FT²)	Wall, Ceiling, or Floor Section	Surface Area (FT²)	
Ozer	0.5	56'x10'(1)	560 (2)	
		22 % 140'	عر دحو	NEAR ratio:
		16'9" *10'	1675	
		22'9"250'(2)	(2746)	NDOArea EnclosureArea = 0,0001
				Allowable NEAR ratio ≤ 0.05,
				Pass/Fail? Regg
TOTAL NDO	AREA= O.S	TOTAL ENCLOSURE	AREA= 4063	

Velocity of Air through NDO

	Exhausted A	Air	Make	Up Air	
Exhaust Point	SCFM	Controlled? (Y/N?)	Make up point	SCFM	
				43411	total NDO area ft ² (from section 5.2)
					$\frac{\text{Exhaust scfm} - 1 \text{ make up scfm}}{\text{NDO area (ft}^2)} = {}$
					fpm should be ≥ 200
					pass/fail?
TOTAL			TOTAL		

Tyl 7:0.011

Tat 12 0.009

Test \$3 = 0.012

Form 1099-2

Test MY = 0,010

O GE Mostardi Platt

Direction of Air through NDO

эщок	Tubes	X	'Velometer		nstic Strips [Other:		
		Nor	mally	Di	rection of Air Flow			All Points?*
NDO No.	No.	Open	Closed	Into Enclosure	Out of Enclosure	Swirled	NDO Required to be Normally Closed?	
2001			/	/			Yes	Yes
-		7.5	-					
<u> </u>								
		***	بن					
-		-	,					

Status of doors and windows

Are all access doors and windows whose areas are not included as NDOs closed during normal operation.

Yes □ No

Capture of VOC Emissions

Does all exhaust ductwork go to control (for PTE) or to a point where it can be measured (for TTE). Yes \square No

^{*}Check to verify that airflow was checked at top, bottom, middle, and both sides of enclosure.

PROCEDURE T DATA SHEET

Project: Ferraga Pan Conde	Sketch enclosure, all ducts, NDOs and potential
Location: mint from	VOC emission points on accompanying page.
Date: 6/26/03	Label all dimensions.
Enclosure Designation: pte Control Devices (s):	Process(es) Enclosed:
40,100, 20,1444 (0),	

NDO to VOC Emission Point

		Equivalent Diameter	VOC Emission Point	Dist		
NDO	Dimensions			Minimum	Actual	Pass/ Fail?
Da	1 "xp"	11.1"	Pol :stran	44.4"	144"	Part
						1

NDOs equivalent diameter = $\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

NDO to Exhaust (TTE only)

		Equivalent Diameter	NDO	Dimensions	Equivalent Diameter	Distances		
Exhaust Point	Dimensions					Minimum	Actual	Pass/ Fail?
							.141	

Equivalent diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO or Exhaust Point)

Near Ratio [NDO Area/Total Enclosure Area]

NĐO	Surface Area (FT²)	Wall, Ceiling, or Floor Section	Surface Area (FT²)	
Ouer	0.66	48" × 12" (2)	576.0(2)	
01		60' x 12'	720.0	NEAR ratio:
		Sa'xin'	624,0	
		60'=8'()	3860(7)	NDOArea = 3,00008 EnclosureArea
		,		Allowable NEAR ratio ≤ 0.05,
				Pass/Fail? Res
TOTAL NDO	AREA= 0.667	TOTAL ENCLOSURE	AREA= 8256	

Velocity of Air through NDO

	Exhausted	Air	Make	Up Air	
Exhaust Point	SCFM	Controlled? (Y/N?)	Make up point	SCFM	
	, demonstration of the second			TACES OF THE STATE	total NDO area - ft ² (from section 5.2)
			-		Exhaust scfm - 1 make up scfm = fpm NDO area (ft²)
					fpm should be ≥ 200
					pass/fail?
TOTAL			TOTAL		

Mheron 2 mar 12 Tut 61 - 0,012	P.	pdu.	
Tut by - 0,008			

Tet #3 = 0.007

Form 1099-2

Test \$4= 0,009

0	CE	Mactan	16	Digtt	

Direction of Air through NDO

Method 1	used to c	heck direct	tion of airf	low:				
□ Smoke	Tubes	図	Velometer	□ Pla	stic Strips	Other:	- Control	
		Normally		Di	rection of Air Flow			
NDO	No.	Open	Closed	Into Enclosure	Out of Enclosure	Swirled	NDO Required to be Normally Closed?	All Points?*
0001	=		/	/			K,	tes
			4					
			ž.					
		4.				-		

Status of doors and windows

Are all access doors and windows whose areas are not included as NDOs closed during normal operation.

Yes
No

Capture of VOC Emissions

Does all exhaust ductwork go to control (for PTE) or to a point where it can be measured (for TTE).

Yes
No

^{*}Check to verify that airflow was checked at top, bottom, middle, and both sides of enclosure.

4			22'9"			Ed A Diar
						\$ 60° A
						Ž
1 1			h			0
	0					0
		C (7)			}	0
	٥					0
	0					٥
	٥					υ
	0					o
	٥					o
				14.500		

					5.00
٥				06 400	ا ارد
٥				0	
0		140		0	
0				0	
o		&)	ishers	→ 0	
3				۵	
0				0	
0				0	
o				0	
o				٥	
					1
0				0 = 90"	
0				0	
a				0	
٥				0	
ي				0	11
o				O	
ی				0	- 11
		7		0	
0				0	- 71

32'0"